Processing
Insights

Search

Results

4 important questions about NIZO

Dairy Homogenization

4 important questions about NIZO

  1. How can I verify that my milk is properly homogenized?

The easiest but also the most time-consuming method is to do this: take the packed product and store it on the shelf or in a climate-room for the desired life-time of the product, and after that measure the fat content at different layers in the milk.

The USPH method is based upon this principal where, for example, 1,000ml of the product is stored for 48 hours. The fat content in the top 100ml is measured as well as the fat content of the rest.

If you multiply the fat content of the top 100ml by 0.90 and compare that to the fat content of the remaining 900ml of a 1000ml package, and the value is lower for the top 100ml, then the milk is sufficiently homogenized. Although a very useful method when checking the stability of pasteurized milk with a shelf life of ten to 14 days, it is not as useful for checking the stability of a product with a required shelf life of three to 12 months.

In order to reduce the storage time an accelerated creaming is required. The standard NIZO method is based upon the same principal as the USPH method, the difference being that the sample is centrifuged for 30 minutes at 40°C and at 1,000rpm. The centrifuge must have a radius of 250mm. The fat content of the bottom 20ml is divided by the fat content of the whole sample prior to centrifuging. This ratio is then multiplied by 100 and the resulting index is called the NIZO value (Z).

Above: the NIZO method by means of centrifugation.

General recommendations state that pasteurized milk with a shelf life of ten to14 days should have a (Z) of approximately 70%, while UHT milk with a shelf life of three to six months should be at least 85% or higher. For further recommendations concerning your product, please contact Tetra Pak.

At Tetra Pak we have taken the NIZO method a step further and linked the (Z) to the size distribution generated by laser diffraction. From the size distribution the size parameter D[5:3], also depicted as H by Walstra, can be extracted and used for calculating the (Z).

Using the following equation (Z) = 114.4-41*D[5:3]-7.4*D[5;3]^2 will give the (Z) of the sample.

  1. What is the difference between the NIZO method and the size distribution curve? What are the pros and cons?

The most obvious difference is the preparation of the sample and how the actual measurement is performed. The NIZO method requires that trained lab personnel have access to a centrifuge such as a Funke Gerber that is able to perform 350g centrifugal force and which can also keep the sample at 40°C. In addition, homogenization pipettes (Funke Gerber) with a volume of 25 ml are also required.

The procedure is as follows:

  1. Measure the fat content of the sample using, for example, a Milkoscan
  2. Pour 25ml of the sample into the homogenization pipette
  3. Heat the pipette in a water bath to 40°C
  4. Centrifuge for 30 minutes
  5. Empty out the bottom 20ml of the centrifugation pipette and measure the fat content in this fraction.
  6. Calculate NIZO(Z)

There are several benefits of using the traditional NIZO method such as easily operated and fairly inexpensive equipment; it can easily be incorporated to standard quality lab routines; and has quick straightforward results. On the other hand drawbacks include a high margin for error during preparation, and poor repeatability and no possibility to see in-depth what has happened with the emulsion.

The NIZO extracted from a size distribution by means of laser-diffraction is a fairly easy procedure with regards to sample preparation and analysis. The benefits of this method are the extensive information regarding the fat globules present in the emulsion giving the possibility to examine in depth the impact of the homogenization treatment, and high repeatability with regards to results and easy and standardised operation by means of standard operating procedures. In contrast the drawbacks are high intial investment cost to buy in the instrument, and the fact that experienced personnel are required to analyze and interpret the size distributions.

Above: Size distribution of homogenized milk.

  1. How does the NIZO method correlate to shelf life?

The definition of shelf life is the time the product can be stored before the quality falls below an acceptable and minimum level. This level is defined by certain parameters such as sedimentation of protein, creaming of fat, colour, taste and texture.

The shelf life depends on many factors: raw milk quality, process conditions, homogenization effect and storage conditions just to mention a few.

The NIZO value is primarily used as an indication to show whether the homogenizer has performed as expected and if the desired particle size of the fat globules has been achieved. The higher the NIZO value is, the smaller the fat globules are, which in turn will have a direct impact on reducing the creaming rate. This can be explained by Stoke’s law, where the velocity of the rising fat globule is directly proportional to its size (see image below).

Above: Creaming rate is slowed down by reducing particle size of the fat globules

  1. Why should you not trust a supplier who promises less than 1 micron on all particles?

When receiving a performance guarantee on particle size stating that all particles will be below 1 micron, it is important that the customer gets proper information on how this is to be validated. If it is not clear under which conditions and with what method the guarantee is to be validated, then it is almost impossible for the customer to validate one supplier against the other – and the 1 micron promise might be useless.

Furthermore, the important thing is not for all customers to achieve below 1 micron. The most essential thing for the customer in terms of homogenization is to achieve the desired product properties. Therefore the customer should look for a supplier knowledgeable enough to support and give the proper recommendations in terms of the particle size needed to achieve a certain product property such as mouth feel, viscosity and so on.

Want to receive updates with useful tips and information about homogenization? Fill in your email below

Separators and sustainability: how the right equipment can reduce the dairy industry’s climate impact
The science of separation
A brief history of separation
Separate wheys: the role of separators in today’s consumer trends
Why cold milk separation is hot again
Watch Your Speed – Tetra Pak® Homogenizer 250
It’s not you, it’s me – Tetra Pak® Homogenizer 250
4 things to look for in a homogenizer
Devils and details – the technologies you need for great spreadable cheese
Spreading knowledge: everything you need to know about mayonnaise production
How to control the cost of mayonnaise and cold emulsion production
The great mayonnaise controversy
3 global food trends and the challenges they pose for mayonnaise producers
4 tips to help you choose the right high shear mixer
High shear mixing reduces the cost of mayonnaise production
How to achieve high-quality mayonnaise
New mixer paves way for geographical and portfolio expansion
How a regional beauty producer saved $70,500 on energy costs
A short history of mixing – from mortar and pestle to microns
The heat exchanger budget dilemma: why project and operational managers disagree
Product-to-product tubular heat exchangers: surprisingly versatile
New heat exchanger welding technique meets 3-A Standard
Quantum leap: the secret to optimum heat exchanger configuration
Buying and owning a Tetra Pak® Tubular Heat Exchanger is child’s play
The digital future of dairies: automation and its effects
Four health trends and how your homogenizer can help you capitalize on them
Common quality issues homogenizers solve
A day in the life of a super-efficient dairy separator
What on Earth do separators have to do with space travel?
Infographic: faster, greener skin care cream manufacturing
How airtight separators help solve the coconut challenge
Why standard steel won’t suffice for dairy separators
Do you need help to navigate the mayonnaise maze?
Why two-stage homogenization is best for tomato products
Fine-tune your homogenizer to boost quality of tomato products
The magic inside our tubular heat exchangers
Cook and grind: from rock-hard beans to paste in 15 minutes
How to choose the right mixing and blending process
Simulation and its role in improving your product quality
How to streamline production for formulated UHT dairy products
2 common powder mixing challenges – and how to solve them
Mixing: where ingredients become products
Reduce total cost of ownership for recombined milk processing by 30%
Yoghurt is booming – here is the best way to mix it
4 steps to perfect blending – with optimal yield and minimal losses
5 questions that hold the secret to the perfect product
How to scale up sauce production
Finished syrup production: success is sweet
How to dissolve sugar safely, economically and reliably
Continuous benefits: 4 reasons to consider in-line blending
Cunning innovation makes a stir in the soft-drink world
Beverages with bite: how to process drinks with particles
How to design the optimal heat exchanger setup for your needs
Minimize your food safety risks with floating protection system
Viscous products and heat transfer: 5 things to think about
Corrosion: how to prevent an everyday risk becoming a problem
Infographic – A brief history of heating food
5 troubleshooting tips for tubular heat exchangers
How to make better soup – with mathematics
Infographic – Food heat transfer basics
Lower your operating costs with preventive maintenance
How to choose the right heat exchanger
Case closed: the magic inside airtight separators
Reduce your pressure – reduce your energy costs
How to ensure separation enhances value in whey production
How a Bactofuge unit restored one dairy’s market share
Clarification: 5 things you need to know
Bacto basics: how to achieve top-quality dairy products
3 tips for keeping your separator clean
Film: the basics of separation in 1 minute
4 important questions about NIZO
Condition monitoring: everything’s under control
The importance of centrifugal separation for product quality
Why an airtight separator is best for product quality
How to achieve high-quality tea through separation
The basic workings of milk homogenization
Homogenizing lactic acid drinks: 4 things to know
The joy of soy: homogenization challenges and solutions
Wanted: a quick lab method for assessing RNGS shelf-life stability
Homogenization: the secret to longer life
Homogenization: what you need to know
9 ways homogenization improves beverage quality
The ketchup effect
How a dairy solved the problem of excessive creaming
Five tips for avoiding common homogenization mistakes
Why a tiny gap makes a big difference for homogenization
How to choose the right piston for your application
How a dairy giant cut CIP energy costs by up to 10%
3 things you need to know about the compressed air for your separator
Video: Best value homogenization in the long run
Discover the benefits of cold milk separation
Homogenizer guide: what to consider for minimum TCO
Good quality water improves separator lifetime and performance: 5 important facts
The secret to large homogenizer cost savings
The cream of the crop: how the separator sparked a dairy revolution
Five reasons to choose an airtight separator
7 things to know about separators
Homogenizer total cost of ownership: what you need to know
How to produce more – without increasing your input
Low noise separators – hearing is believing
Homogenizer buying guide – 6 things to know
Why Tetra Pak Homogenizers give you best value in the long run
Get ten years’ peace of mind with unique warranty
How a dairy saved €19,500 in annual energy costs